Extreme functionals on an upper semicontinuous function space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper semicontinuous valuations on the space of convex discs

We show that every rigid motion invariant and upper semicontinuous valuation on the space of convex discs is a linear combination of the Euler characteristic, the length, the area, and a suitable curvature integral of the convex disc. 1991 AMS subject classification: 52A10, 53A04

متن کامل

A note on non lower semicontinuous perimeter functionals on partitions

We consider isotropic non lower semicontinuous weighted perimeter functionals defined on partitions of domains in R. Besides identifying a condition on the structure of the domain which ensures the existence of minimizing configurations, we describe the structure of such minima, as well as their regularity.

متن کامل

A Note on Random Upper Semicontinuous Functions

This note aims at presenting the most general framework for a class U of random upper semicontinuous functions, namely random elements whose sample paths are upper semicontinuous (u.s.c.) functions, defined on some locally compact, Hausdorff and second countable base space, extending Matheron’s framework for random closed sets. It is shown that while the natural embedding process does not provi...

متن کامل

On a Choquet Theorem for Random Upper Semicontinuous Functions

We extend some topologies on the space of upper semicontinuous functions with compact support to those on that of general upper semicontinuous functions and see that graphical topology and modified L topology are the same. We then define random upper semicontinuous functions using their topological Borel field and finally give a Choquet theorem for random upper semicontinuous functions.

متن کامل

Convex Representation for Lower Semicontinuous Envelopes of Functionals in L

G. Alberti, G. Bouchitté and G. Dal Maso recently found sufficient conditions for the minimizers of the (nonconvex) Mumford-Shah functional. Their method consists in an extension of the calibration method (that is used for the characterization of minimal surfaces), adapted to this functional. The existence of a calibration, given a minimizer of the functional, remains an open problem. We introd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1974

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1974-0328579-3